AKS DevOps CaseStudy1

Last updated by | Fabian Flanhardt | Mar 18, 2021 at 3:06 PM GMT+1

AKS DevOps Case Study 1

Contents

+ AKS DevOps Case Study 1
+ Challenge
« Microsoft Technologies
« Target App-Infrastructure
* Secrets Management
« Deployment of Azure resources
» Configuration of Kubernetes Cluster
« Container Build and Deployment Process
« Staging

» Conclusion

Challenge

Our customer has a containerizes application and is looking for a reliable and scalable solution to deploy it.
To keep administration tasks to a minimum the customer wants to make use of PaaS Resources in a public
cloud environment, and an automated CI/CD process.

The main system consists of multiple containerized services including a web application which stores data in
a MySQL database as well as assets in a volume. A Redis container is used to minimize the database load by
caching requests. The database is frequently backed-up by dumping all schemas and data into a file. Several
other containers perform processes like database migrations and other maintenance tasks.

Microsoft Technologies

e Azure Kubernetes Services
¢ Azure Database for MySQL
e Storage Accounts

¢ Application Gateway

¢ Virtual Network

e LogAnalytics

e DevOps Services

Target App-Infrastructure

As solution for the described requirements a managed Azure Kubernetes Services (=AKS) cluster comes to
use which can run all containers with minimum changes required to the application. A secured ingress is
handled by an Azure Application Gateway. As for a database solution the MySQL database is deployed as a
managed PaaS database in Microsoft Azure. To reduce load on the primary database, a replica database is
deployed for all reporting and backup purposes. Azure Fileshares are mounted in the AKS cluster as

persistent volumes to provide necessary storage for assets and database-dumps. The AKS cluster, MySQL
database and Application Gateway is monitored using an Azure LogAnalytics Workspace.

e £+ Virtual Network
u Z.- ppplication Gateway Subnet ™ AKS Subnet
Enduser
l %55 Managed Cluster
kube-system application
== &
I =t =—)= =—— o O
s
Public IP Address 25 | Applcation Gateway AGIC Web Teleri Maintenance
i
% 5
_EE Clone
5 oS- @ O OO0 O O O @®
mysqldump Migrator Sidekiq Pemstem Voiume Persistent Volume Telerik-Nginx Maintenance Github Repository

Azurestorage Config Volume Volume

= Storage Account

-

File Share

-

File Share

[MySQL Database Server

m <
<
MySQL
Database

Cluster Performance Metrics

MySOL Dagnostics

Replication

- D Log Analytics
[MySQL Database Server (Replica) 25~ Log Analyti

= LD

AKS Solution

s

— un
AGW Solution

Audit Database

Secrets Management

All Secrets are stored in a manually configured Azure KeyVault. In order to make use of those secrets in
Azure DevOps Pipelines a variable group is created which is linked to the preexisting KeyVault. The SPN used
for the DevOps Pipelines has list and get access to this KeyVault, so it can retrieve stored secrets during
runtime.

In a few cases the KeyVault is directly referenced in an Azure Resource Manager template (= ARM Template).

Deployment of Azure resources

For the deployment of the Infrastructure and the application itself Azure DevOps CI/CD pipelines are used to
have a streamlined experience and centralized manageability.

e
Environment
Repository

l | | .
v, ¢

=== - Application
Build Pipeline (. Shared Resource Group Build Pipeline
1]
I
[Secret Reference » Q < - - Secret Reference [
KeyVault
@
AKS Resource Grou -
) - & MySQL Database Server
l m
‘ Appicalion Gateway Mysm_
[— [i =
Database <
Application Gateway
ARM Template =~ =" & MySQL Database Server (Replica) MySQL
— ARM Template
I Public IP Address —
A——
—
Install and configure _’ .. Audit Database
- aad-pod-identity bbom
- agic —> DD
@ Managed Cluster == Storage Account
. ‘
AKS Cluster
ARM Template AhalﬁyrSQLl ;
File Share Ehpe
(.’] Networking Resource Group
7.\ Virtual Network
@) — 4\ 24N
AKS Subnet Applicatio
Nested ARM Template SAuﬁet Gaewayn
Subnet
(.’] Monitoring Resource Group

@)

AKS Cluster ogAnalyti
ARM Template LWO,ksa;);ués

First, all Azure resource for the base infrastructure are deployed in the following order:

1. Log Analytics workspace
2. Application Gateway
3. Managed Azure Kubernetes Cluster

Application specific resources are being deployed in a separate pipeline. This allows for better maintenance
and flexibility for deployment of other applications in the future.

One Pipeline deploys the MySQL Database with all necessary resources as well as the Azure Fileshares by
executing ARM Templates. The main database is being replicated to another database. The SQL Admin

password is set by a reference to the manually managed KeyVault in the ARM Template.

Configuration of Kubernetes Cluster

After deploying the Azure resources, the Kubernetes Cluster is being configured.

The helm package aad-pod-identity gets installed. It will be used so pods can access other Azure resources
and configure them (e.g. Application Gateway).

helm repo add aad-pod-identity https://raw.githubusercontent.com/Azure/aad-pod-identity/master/charts
helm repo update
helm upgrade aad-pod-identity --install aad-pod-identity/aad-pod-identity

The Kubernetes cluster is configured to use the Application Gateway as ingress using Application Gateway
Ingress Controller (=agic). This controller is installed in a separate namespace called agic.

kubectl create namespace agic --output yaml --dry-run | kubectl apply --filename -
helm repo add application-gateway-kubernetes-ingress https://appgwingress.blob.core.windows.net/ingress-azt
helm repo update
helm upgrade agic --install --namespace agic --version $(agicVersion) \

--set appgw.subscriptionId=$(subscriptionId) \

--set appgw.resourceGroup=$(ResourceGroupName) \

--set appgw.name=$(applicationGateWayName) \

--set appgw.subnetName=$(applicationGatewaySubnetName) \

--set appgw.subnetID=$(applicationGatewaySubnetId) \

--set appgw.shared=false \

--set appgw.usePrivateIP=false \

--set armAuth.type=aadPodIdentity \

--set armAuth.identityResourceID=$(appGwOutput.identityResourcelId) \

--set armAuth.identityClientID=$(appGwOutput.identityClientId) \

--set rbac.enabled=true \

application-gateway-kubernetes-ingress/ingress-azure

Container Build and Deployment Process

All changes code changes to the web application in the corresponding Azure DevOps repository trigger a
build pipeline. This pipeline compiles the application for a release, pulls a base container image from a
public container registry and builds a predeployed container. If the build succeeds a release pipeline is then
started. The release pushes a helm chart to the AKS cluster which describes the container and all other
necessary kubernetes resources and configuration (e.g. volumes, services, agic configuration, ...). The cluster
then pulls the image from the private container registry and starts all defined components.

Cj Azure DevOps Build Process G Azure DevOps Release p e
Publish ; application X
Trigger on Commit built container image --]]
[pm» '
Web application Azure DevOps Build Pipeline Private container registry Azure DevOps Helm Chart Managed Cluster '\ _________ ,'
repository Release Pipeline
Triggers

Pulll
base cortainerimage
Full
built container image

&

Public container registry Private confainer registry

Staging

For each stage a separate AKS cluster including all Azure Resources is deployed. This ensures that all
changes are thoroughly tested prior deployment to production in order to keep service availability and
quality as high as possible.

The environment is deployed in three stages:

¢ Development

e Test
e Prod

i Environment
= Repositary

{} featureffeature? = = = .—)- .—)—. -------

Checkout Commit Pull request

—®

- I

Infrasiruciure
Build Pipeline

An Azure DevOps build pipeline deploys all stages based on the branch of the last git commit.
It is mapped as follows:

Stage | Branch

Dev refs/feature/*

Test refs/test

Prod refs/master
Conclusion

)

- -

\ g

Test

- ~

\

Prod

The implemented solution allows our customer to extend the application with other components, deliver
features faster to endusers and keep the environment scalable with high availability. Also, the AKS cluster in

its configuration allows hosting multiple applications in different namespaces.

