AKS Complex Solutions CaseStudy1

Last updated by | Andreas Walter | Mar 27, 2021 at 7:19 AM GMT+1

AKS Complex Solutions Case Study 1

Contents
» AKS Complex Solutions Case Study 1
+ Challenge
« Microsoft Technologies
« Target App-Infrastructure
» Migration to new environment
» Reworked VNET module (Codesnippet)
* Deployment of the kured helm chart (Codesnippet)
« Configuration of plattform monitoring
« Datadog function deployment (ARM-Workaround) (Codes...
« Permissions Using Managed Identities
« ACR RBAC assignment(Codesnippet)
* ACR Pull rights (Codesnippet)
 Docker Image deployment

» Conclusion

Challenge

Our Customer has an existing Application built on Azure laaS and PaaS solutions. All systems had been
setup using Terraform as laC tool. Starting on the basis of this code, our customer asked us to check the
environment against Azure Best Practices, optimize the code and the pipelining, while taking into account
scalability and release management as well as security. The new environment is to be setup in a new release
including the optimizations to pipelining. All resources are to be managed by our managed service
department to take care of monitoring and availability and troubleshoot issues, should they arise.

Microsoft Technologies

¢ APl Management Gateway
¢ Application Gateway

e Azure Cache for Redis

e Azure DNS / Private DNS Zones
e Azure Functions

e Azure Kubernetes Services
¢ Container Registry

e Event Hub

e Key Vault

¢ Log Analytics Workspace

e Private Endpoint

e Service Bus



¢ SQL Databases
e Storage Accounts

¢ Virtual Network

Target App-Infrastructure

The customers application consists of the basic elements, AKS Cluster, Service Bus, APl Management
Gateway and Application Gateway. Communication should be secured where possible by using vnet traffic
only, while keeping cost to a minimum. The application entry point is the Application Gateway. The
application gateway is the applications entrypoint and distributes traffic to the pods. The Application
Gateway also provides the WAFv2. For a rough description of what is every service used for take a look at
the following table:

Service

Usage

APl Management Gateway

Gateway for all mobile devices to Azure resources

Application Gateway

Webapplication Firewall v2 and entrypoint to AKS

Azure Cache for Redis

Redis Cache for APl Management

Azure DNS / Private DNS
Zones

Dynamic DNS for all services and private endpoint DNS settings

Azure Functions

Datadog log forwarder for monitoring

Azure Kubernetes Services

Main application services are hosted in Kubernetes

Container Registry

Contains all the customers own container images

Event Hub

Application event dispatching / Datadog Logforwarding

Key Vault

Secures all of the environments secrets and certificates

Log Analytics Workspace

Captures logs that do not get streamed to datadog

Private Endpoint

Secures the traffic for SQL Databases

Service Bus

Application message dispatching

SQL Databases

Application database, one database per application

Storage Accounts

Terraform state storage and possible application persistent
storage

Virtual Network

Provides communication to all "Close-to-laaS" services




]

H
Datadog Eventhub

5N

| Datadog LogFunction

& =

Azurg APIM  Service Bus Application Gatewa

6y

Azure Cache for Redis

Diev Subscription

Management Subscription

o ol

%

Private DNS :Zgnes

e R N

*

Virtual Nehwork Link

é.' a
Ko

= R

a s e ow e

o

Log Analytics Workspace,

0 ©

Service Managed |denfities  Infrastructure KeyVault

@

H Azure Confainer Reqistry  Terraform Stafe Storage
DMNS Zones

Prod Subscription

\irtual Network Link

B Azur

APIM  Service Bus Application Gateway

Fo.zur_e Cache for Redis

(oodd 6

DEV Spoke

11 ]
DO
1Rl
AKS

Service /
Private
Endpoint

> P

PROD Spoke

g
--- Service [
-- Private
AKS

Endpoint

Migration to new environment

The main code of the infrastructure is a rewrite of the previous environment. All existing Terraform modules

were rewritten, to observe security and application best practices, where possible. Conceptually the

Networking infrastructure was setup first.

The old infrastructure used wider network address spaces than currently permitted by the customers

network department for Azure environments. Since in the future it might become necessary to add a hub
network and peering, all IP-address ranges had to be coordinated with the customers network department.
Therefore the maximum amount of addresses required by the application was discussed with the customer.

One environments infrastructure (either TEST or PROD) consists of one /21 that is divided in several

subnets.



Environment | VNET address space | Cluster subnet | WAF subnet Private Endpoint subnet

Prod 10.123.0.0/21 10.123.0.0/22 | 10.123.4.0/24 10.123.5.0/26

Test 10.123.8.0/21 10.123.8.0/22 | 10.123.12.0/24 | 10.123.13.0/26

Previously the vnet creation was included in the Terraform module for the AKS cluster, since the VNET was
not only used for just AKS it was decided to move the configuration from the AKS Cluster to a separate
VNET module. As can be seen in the following code, the creation of the network includes the virtual network
links to the private DNS zones and is dependent on the management module being deployed beforehand.

Reworked VNET module (Codesnippet)

resource "azurerm_virtual_network" "serviceVnet" {
address_space = [var.clusterVnetAddressSpace]
location = var.location
name format("%s-vnet", var.resourceNamePrefix)
resource_group_name = var.resourceGroupName

tags = var.tags

}

resource "azurerm_private_dns_zone_virtual_network_link" "pdnsVnetLink" {
for_each = toset(var.privatelLinkZones)
name = replace("${each.value}-${azurerm_virtual_network.serviceVnet.name}",".","-")
resource_group_name = format("%s-rg", local.resourceGroupMgmtNamePrefix)
private_dns_zone_name = each.value
virtual_network_id = azurerm_virtual_network.serviceVnet.id
provider = azurerm.mgmt

}

resource "azurerm_subnet" "peSubnet" {
address_prefixes = [var.privateEndpointsAddressSpace]
name = format("%s-subnet-pe", var.resourceNamePrefix)

resource_group_name var.resourceGroupName
virtual_network_name = azurerm_virtual network.serviceVnet.name
service_endpoints = var.subnetServiceEndpoints
enforce_private_link_endpoint_network_policies = true

}

resource "azurerm_subnet" "k8sSubnetCluster" {
address_prefixes = [var.clusterPodSubnetAddressSpace]
name = format("%s-subnet-cluster", var.resourceNamePrefix)
resource_group_name = var.resourceGroupName

virtual_network_name = azurerm_virtual_network.serviceVnet.name
service_endpoints = var.subnetServiceEndpoints

}
resource "azurerm_subnet" "k8sSubnetWaf" {
address_prefixes = [var.clusterServiceSubnetAddressSpace]
name = format("%s-subnet-waf", var.resourceNamePrefix)

resource_group_name
virtual_network_name

var.resourceGroupName
azurerm_virtual_network.serviceVnet.name

The following graphic should visualize how repositories are dependent from one another. The first to be
deployed is the management infrastructure. If this is a first time deployment, the Terraform state storage
does not exist yet. Therefore it is necessary to do a local bootstrap of the management infrastructure. After
the state storage is created, the state is migrated to the state storage and management infrastructure can
then be deployed using pipelines. After the management infrastructure is setup, all necessary administrative
role assignments are done and the management subscription is to be considered onboarded.



The app infrastructure is split into two subscriptions, where the test and dev application share the
infrastructure of the TEST-subscription and the production deployment runs on the Azure PROD-
subscription the app infrastructure deployments also do a basic setup of the AKS clusters, to deploy some
management namespaces and helm charts, such as kured or ingress and egress resources.

Deployment of the kured helm chart (Codesnippet)

provider "helm" {
kubernetes {
host = module.k8sCluster.k8sConfig.host

client_key
client_certificate
cluster_ca_certificate

base64decode(module.k8sCluster.k8sConfig.client_key)
base64decode(module.k8sCluster.k8sConfig.client_certificate)
base64decode(module.k8sCluster.k8sConfig.cluster_ca_certificate)

}
}
resource "helm_release" "kured" {
chart = "kured"
name = "kured"
repository = "https://weaveworks.github.io/kured"

namespace = local.namespaceName

set {
name = "image.tag"
value = var.kuredVersion
}
set {
name = "configuration.timeZone"
value = var.timeZone
¥
set {
name = "configuration.startTime"
value = var.rebootStartTime
¥
set {
name = "configuration.endTime"
value = var.rebootEndTime
}
set {
name = "maxUnavailable"
value = var.maxNodesUnavailable
}
values = [
<<EOF
configuration:
rebootDays: ${var.rebootDays}
EOF
1

depends_on = [module.namespace]

In the third step, the application specific repositories are deployed. These repositories target all
subscriptions, since in the management subscription there might be some shared infrastructure such as DNS
Zones that need to be populated.



terraform-modules (releasefd x)

© ,,

MGMT| {main)

)

Infrasiructufe (develop) y

Infrastruciure (main)

@ e P
B

Y

Tl

(N5

L

© 6

Management Resources TEST/PROD Environment Application Deployment

1 1 1 ]

D

Ve
fie
Die
! Pl
>
N
7,
H
m
i

Configuration of plattform monitoring

Our standard monitoring currently is Datadog, therefore Datadog was deployed using Helm charts on the
AKS cluster. Monitoring of Azure Resources is resolved using the a Datadog Service Principal with the
"Monitoring Reader" permissions and Datadog handles Subscription and Resource discovery.

For Azure Activity Logs this process isn't that easy, Datadog requires an Eventhub and a Function App that
pushes the diagnostic information and logs to the Datadog-Service. Datadog does only provide ARM-
Onboarding for these resources, however a requirement for us was to not create secondary deployments.
Therefore the ARM-deployments were converted to Terraform.

As is always with Terraform some features are not available in Terraform. One example is the deployment of
the actual function itself. However due to Terraform being able to deploy ARM-templates into an
environment this issue can be easily resolved.

Note: that the following example uses an azurerm_template_deployment resource rather than the new
azurerm_resource_group_template_deployment this is due to the fact, that the new resource has a bug at time
of writing this casestudy (azurerm provider version 2.52 and earlier fixed in 2.53).

Datadog function deployment (ARM-Workaround) (Codesnippet)



resource "azurerm_template_deployment™ "functionDatadog" {
name = "${azurerm_function_app.functionAppDatadog.name}-datadog-log-forwarder"
resource_group_name = var.resourceGroupName
deployment_mode = "Incremental"
parameters = {
"functionCode" = file("${path.module}/index.js")

}
template_body = <<TEMPLATE

{
"$schema”: "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"functionCode": {
"type": "String",
"metadata”: {
"description”: "Code for the function to run, saved into index.js"

}
}
¥

"variables": {},
"resources": [

{

"type": "Microsoft.Web/sites/functions",

"apiVersion": "2020-06-01",

"name": "${azurerm_function_app.functionAppDatadog.name}/datadog-log-forwarder",

"dependsOn": [],

"properties": {

"config": {
"bindings": [
{

"name": "eventHubMessages",
"type": "eventHubTrigger",
"direction": "in",
"eventHubName": "${azurerm_eventhub.eventHub.name}",
"connection": "Datadog-EventHub-AccessKey",
"cardinality": "many",
"dataType": "",
"consumerGroup": "$Default”

}
1,

"disabled": false

¥
"files": {
"index.js": "[parameters('functionCode')]"

}

]
}
TEMPLATE
}

Permissions Using Managed Identities

One of the best practices we adhered to was to minimize the usage of fixed credentials in the deployments.
So every service was configured to use either userAssigned Or SystemAssigned managed service identities.
Since the Terraform service principals are dedicated to each subscription it is necessary to add owner / User
Account Admninistrator permissions to some resources in the management subscriptions. One example is the
ability to assign Acrpull permissions to the AKS clusters MSI.

In the ACR module the Terraform service principals were added as Owner to the container registry

ACR RBAC assignment(Codesnippet)



resource "azurerm_role_assignment" "RegistryOwner" {
for_each = toset(var.workloadSubSPObjectIds)

scope = azurerm_container_registry.containerRegistry.id
role_definition_name = "Owner"
principal_id = each.key

In the K8s Module the Kubelet identity was then added to the Acrpull role to enable a connection to the
shared container registry.

ACR Pull rights (Codesnippet)

resource "azurerm_role_assignment" "k8sServicePrincipalRightsArcPull" {

scope = data.azurerm_container_registry.containerRegistry.id
role_definition_name = "AcrPull"
principal_id = azurerm_kubernetes_cluster.k8sCluster.kubelet_identity.0.object_id

}

Docker Image deployment

The images for the Azure container registry are prepared by building images from the customer on premises
repository and pushing the images to the container registry using Jenkins pipelines.

<

Docker Pull

¢

docker
Customer Registry

-

Drocker Build

HS

Docker Push

4

Azure Container Regisiry

-

E
L =
=1 =)
oW
-



FROM repo.customer.com:8020/<repo>/<imageName>:<imageTag>

COPY --chown=jboss deployments $JBOSS_HOME/standalone/deployments/
COPY --chown=jboss property /opt/jboss/property/

RUN touch $JBOSS_HOME/standalone/deployments/<DODEDPLOYFILE>.dodeploy

USER root

RUN curl -k https://<customerCAURL>.customer.com:8443/CAName --output $IBOSS_HOME/CAName.cer \

&& keytool -import -trustcacerts -keystore "$JAVA _HOME/lib/security/cacerts" -alias CAName -storepass chang
&& rm $IBOSS_HOME/CAName.cer

USER jboss

Conclusion

This project enabled our customer to redesign their current infrastructure and enable managed services for
Azure laaS and PaaS resources were necessary. The fully automated infrastructure deployment enables the
customer to work with release based upgrades of their infrastructure while still having the ability to
customize the environment for their customers based on Terraform modules.



